Extraction of material properties through multi-fidelity deep learning from molecular dynamics simulation

نویسندگان

چکیده

Simulation of reasonable timescales for any long physical process using molecular dynamics (MD) is a major challenge in computational physics. In this study, we have implemented an approach based on multi-fidelity physics informed neural network (MPINN) to achieve long-range MD simulation results over large sample space with significantly less cost. The fidelity our present study the integration timestep size simulations. While simulations larger produce lower level accuracy, it can provide enough computationally cheap training data MPINN learn accurate relationship between these low-fidelity and high-fidelity obtained smaller timestep. We performed two benchmark studies, involving one component LJ systems, determine optimum percentage required high saving. show that important system properties such as energy per atom, pressure diffusion coefficients be determined accuracy while saving 68% costs. Finally, demonstration applicability methodology practical studied viscosity argon-copper nanofluid its variation temperature volume fraction by MPINN. Then compared them numerous previous studies theoretical models. Our indicate predict at wide range small number first implementation conjunction predicting nanoscale properties. This pave pathways investigate more complex engineering problems demand

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extraction and acetylation of purified trypsin from bovin pancreas and study of some its physico-chemical properties

آنزیم تریپسین در شرایط قلیایی ناپایدار می باشد .و فعالیت پروتئولیتیکی تریپسین منجربه خود هضمی آن در جایگاههای خاصی می گردد. بنابر این آنزیمی با ناپایداری بالا محسوب میگردد. در سالهای اخیر موفق شدند که با ایجاد تغیرات شیمیایی با اضافه کردن فلزات خاص ، کلسیم و یا عمل استیلاسیون منجر به افزایش پایداری آنزیم تریپسین گردند. مطالعات در حال حاضر نشان می دهد که تریپسین استیله شده فعالیت آنزیمی خود را ...

15 صفحه اول

Deep Visuo-Tactile Learning: Estimation of Material Properties from Images

Estimation of materials properties, such as softness or roughness from visual perception is an essential factor in deciding our way of interaction with our environment in e.g., object manipulation tasks or walking. In this research, we propose a method for deep visuo-tactile learning in which we train a encoder-decoder network with an intermediate layer in an unsupervised manner with images as ...

متن کامل

Investigation of Melting by Molecular Dynamics Simulation

The melting of a 64 ion microcrystal of KCI was studied by means of a molecular dynamics computer simulation. We used a central pair interaction with an inverse power law repulsion. The thermodynamics, kinetic and structural properties such as melting temperature, latent heat, mean square displacement, diffusion constant, radial distribution function and bond angle distribution are calculated. ...

متن کامل

Molecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells

This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.

متن کامل

Molecular Structure Extraction From Documents Using Deep Learning

Chemical structure extraction from documents remains a hard problem due to both false positive identification of structures during segmentation and errors in the predicted structures. Current approaches rely on handcrafted rules and subroutines that perform reasonably well generally, but still routinely encounter situations where recognition rates are not yet satisfactory and systematic improve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Materials Science

سال: 2021

ISSN: ['1879-0801', '0927-0256']

DOI: https://doi.org/10.1016/j.commatsci.2020.110187